Package: alphaci 1.0.1

Jonas Moss

alphaci: Confidence Intervals for Coefficient Alpha and Standardized Alpha

Calculate confidence intervals for alpha and standardized alpha using asymptotic theory or the studentized bootstrap, with or without transformations. Supports the asymptotic distribution-free method of Maydeu-Olivares, et al. (2007) <doi:10.1037/1082-989X.12.2.157>, the pseudo-elliptical method of Yuan & Bentler (2002) <doi:10.1007/BF02294845>, and the normal method of van Zyl et al. (1999) <doi:10.1007/BF02296146>, for both coefficient alpha and standardized alpha.

Authors:Jonas Moss [aut, cre]

alphaci_1.0.1.tar.gz
alphaci_1.0.1.zip(r-4.5)alphaci_1.0.1.zip(r-4.4)alphaci_1.0.1.zip(r-4.3)
alphaci_1.0.1.tgz(r-4.5-any)alphaci_1.0.1.tgz(r-4.4-any)alphaci_1.0.1.tgz(r-4.3-any)
alphaci_1.0.1.tar.gz(r-4.5-noble)alphaci_1.0.1.tar.gz(r-4.4-noble)
alphaci_1.0.1.tgz(r-4.4-emscripten)alphaci_1.0.1.tgz(r-4.3-emscripten)
alphaci.pdf |alphaci.html
alphaci/json (API)

# Install 'alphaci' in R:
install.packages('alphaci', repos = c('https://jonasmoss.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/jonasmoss/alphaci/issues

Pkgdown site:https://jonasmoss.github.io

On CRAN:

Conda:

4.00 score 1 scripts 283 downloads 2 exports 8 dependencies

Last updated 1 years agofrom:5da4b8369e. Checks:6 OK, 3 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 19 2025
R-4.5-winNOTEMar 19 2025
R-4.5-macNOTEMar 19 2025
R-4.5-linuxNOTEMar 19 2025
R-4.4-winOKMar 19 2025
R-4.4-macOKMar 19 2025
R-4.4-linuxOKMar 19 2025
R-4.3-winOKMar 19 2025
R-4.3-macOKMar 19 2025

Exports:alphacialphaci_std

Dependencies:codetoolsdigestfuturefuture.applyglobalslistenvmatrixcalcparallelly

Simulation of confidence intervals.

Rendered fromsimulations.Rmdusingknitr::rmarkdownon Mar 19 2025.

Last update: 2022-10-08
Started: 2022-10-03

Verifying the variances.

Rendered fromverification.rmdusingknitr::rmarkdownon Mar 19 2025.

Last update: 2022-10-05
Started: 2022-10-05