Package: attenuation (via r-universe)

September 12, 2024

September 12, 2024	
Type Package	
Title Correcting for Attenuation Due to Measurement Error	
Version 1.0.0	
Description Confidence curves, confidence intervals and p-values for correlation coefficients corrected for attenuation due to measurement error. Implements the methods described in Moss (2019, <arxiv:1911.01576>).</arxiv:1911.01576>	
License MIT + file LICENSE	
<pre>URL https://github.com/JonasMoss/attenuation/</pre>	
BugReports https://github.com/JonasMoss/attenuation/issues Encoding UTF-8 LazyData true Suggests testthat, covr, spelling RoxygenNote 6.1.1 Language en-US Repository https://jonasmoss.r-universe.dev RemoteUrl https://github.com/jonasmoss/attenuation RemoteRef HEAD RemoteSha ef819d6ea0ac47cfd1f3ed89e524af9015d51540	
Contents	
cc ci lines.ccaf plot.ccaf print.ccaf p_value Index	

2 cc

Confidence curves for attenuated correlation coefficients.

Description

Confidence curves for attenuated correlation coefficients.

Usage

```
cc(r, N, lower = -1, upper = 1, by = 0.001, method = "corr", k = NULL)
```

Arguments

r	Numeric vector of three elements in $[-1,1]$. $r[1]$ is the correlation between the noisy measures X' and Y' , $r[2]$ is the correlation between the noisy X' and the true X , while $r[3]$ is the correlation between the noisy Y' and the true Y .
N	Numeric vector of three positive integers. $N[i]$ is the sample size for $r[i]$.
lower	Lower bound for the curve. Defaults to -1.
upper	Upper bound for the curve. Defaults to 1.
by	Increment of the sequence from lower to upper.
method	The type of confidence curve. Can be "corr", "cronbach", "HS" or "free". See the details of p_value .
k	Numeric vector of two positive integers. k[i] is the number of testlets for the for r[i+1]. Only needed for method "cronbach".

Value

An object of class ccaf.

Examples

```
r = c(0.20, sqrt(0.45), sqrt(0.55))

N = c(100, 100, 100)

plot(cc(r, N))
```

СС

ci 3

ci	Calculate a confidence interval for an attenuated correlation coefficient.

Description

Calculate a confidence interval for an attenuated correlation coefficient.

Usage

```
ci(r, N, level = 0.95, method = "corr", k = NULL)
```

Arguments

r	Numeric vector of three elements in $[-1,1]$. $r[1]$ is the correlation between the noisy measures X' and Y' , $r[2]$ is the correlation between the noisy X' and the true X , while $r[3]$ is the correlation between the noisy Y' and the true Y .
N	Numeric vector of three positive integers. N[i] is the sample size for r[i].
level	Numeric in [0, 1]. Confidence level of the interval. Defaults to 0.95.
method	The type of confidence curve. Can be "corr", "cronbach", "HS" or "free". See the details of p_{value} .
k	Numeric vector of two positive integers. k[i] is the number of testlets for the for r[i+1]. Only needed for method "cronbach".

Value

Numeric in [0, 1]. The p-value under null-hypothesis rho.

Examples

```
r = c(0.20, sqrt(0.45), sqrt(0.55))

N = c(100, 100, 100)

ci(r, N) \# Calculates 95\% confidence set for rho.
```

lines.ccaf

Add a plot a confidence curve of attenuated correlation coefficients.

Description

Add a plot a confidence curve of attenuated correlation coefficients.

Usage

```
## S3 method for class 'ccaf'
lines(x, type = "1", col = "red3", lwd = 2, ...)
```

plot.ccaf

Arguments

X	An object of class ccaf. The confidence curve to plot.
type	The type of plot.
col	The color of the curve.
lwd	The thickness of the curve.
	Passed to lines.

Value

An invisible copy of x.

plot.ccaf	Plot a confidence curve of attenuated correlation coefficients.

Description

Plot a confidence curve of attenuated correlation coefficients.

Usage

```
## S3 method for class 'ccaf'
plot(x, y, level = 0.95, ...)
```

Arguments

x	An object of class ccaf. The confidence curve to plot.
у	Ignored; supported for compatibility with the plot generic.
level	Level to highlight. Defaults to 0.95. If NULL, highlights no level.
	Passed to plot.

Value

An invisible copy of x.

print.ccaf 5

print.ccaf

Print method for ccaf

Description

Print method for ccaf

Usage

```
## S3 method for class 'ccaf'
print(x, digits = 3, ...)
```

Arguments

x Object of class ccaf.digits Passed to signif.... Ignored.

Value

Invisible copy of x.

p_value

Calculate the p-value for an attenuated correlation coefficient.

Description

This function calculates four types of p-values for correlations coefficients corrected for attenuation, chosen in "method". The different p-values are described in Moss (2019). "corr" is the correlation based p-value, "cronbach" is the Cronbach alpha based p-value, "HS" is the Hunter-Schmidt p-value, while "free" is the correlation based p-value without positive constraints.

Usage

```
p_value(rho, r, N, method = "corr", k = NULL)
```

Arguments

r

rho Numeric vector in [-1,1]. The correlation under the null hypothesis.
--

Numeric vector of three elements in [-1,1]. r[1] is the correlation between the noisy measures X' and Y', r[2] is the correlation between the noisy X' and the true X, while r[3] is the correlation between the noisy Y' and the true Y. They are the square root of the reliabilities. Must be positive method to "corr" and

"cronbach".

N Numeric vector of three positive integers. N[i] is the sample size for r[i].

p_value

method	The type of p-value. Can be "corr", "cronbach", "HS" or "free". See the details.
k	Numeric vector of two positive integers. k[i] is the number of testlets for the for r[i+1]. Only needed for method "cronbach".

Value

Numeric in [0, 1]. The p-value under the null-hypothesis that the true correlation is rho.

Examples

```
r = c(0.20, sqrt(0.45), sqrt(0.55))

N = c(100, 100, 100)

p_value(rho = 0, r, N) # Tests rho = 0.
```

Index

```
cc, 2
ci, 3
lines.ccaf, 3
p_value, 2, 3, 5
plot.ccaf, 4
print.ccaf, 5
```